Oxidative stress induced by Se-deficient high-energy diet implicates neutrophil dysfunction via Nrf2 pathway suppression in swine

نویسندگان

  • Tianshu Yang
  • Zeping Zhao
  • Tianqi Liu
  • Ziwei Zhang
  • Pengzu Wang
  • Shiwen Xu
  • Xin Gen Lei
  • Anshan Shan
چکیده

The mechanism of the interaction between Se deficiency and high energy remains limited. The aim of the current study was to identify whether Se-deficient, high-energy diet can induce oxidative stress, and downregulate the Nrf2 pathway and phagocytic dysfunction of neutrophils. We detected the phagocytic activity, ROS production, protein levels of Nrf2 and Nrf2 downstream target genes, and the mRNA levels of 25 selenoproteins, heat shock proteins, and cytokines in neutrophils. Cytokine ELISA kits were used to measure the serum cytokines. The concentration of ROS was elevated (P < 0.05) in obese swine fed on a low Se diet (less than 0.03 mg/kg Se) compared to control swine. The protein levels of Nrf2 and its downstream target genes were depressed during Se deficiency and high-energy intake. The mRNA levels of 16 selenoproteins were significantly decreased (P < 0.05) in the Se-deficient group and Se-deficient, high-energy group compared to the control group. However, the mRNA levels of 13 selenoproteins in peripheral blood neutrophils were upregulated in high energy group, except TrxR1, SelI and SepW. In summary, these data indicated that a Se-deficient, high-energy diet inhibits the Nrf2 pathway and its regulation of oxidative stress, and prompted a pleiotropic mechanism that suppresses phagocytosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective Effect of Aerobic Training and Royal Jelly on Oxidative Stress in Cardiomyocytes in Obese Rats

Background and purpose: Obesity leads to a variety of metabolic changes that may contribute to abnormalities in the structure and function of the heart. The aim of this study was to investigate the effect of royal jelly and aerobic training on oxidative stress in cardiomyocytes in high-fat diet-induced obese rats. Materials and methods: In this experimental study, 45 male rats were randomly di...

متن کامل

Tempol relieves lung injury in a rat model of chronic intermittent hypoxia via suppression of inflammation and oxidative stress

Objective(s): Obstructive sleep apnea (OSA) is confirmed to cause lesions in multiple organs, especially in the lung tissue. Tempol is an antioxidant that has been reported to restrain inflammation and oxidative stress, with its role in OSA-induced lung injury being unclear. This study aimed to investigate the beneficial effect of tempol on chronic intermittent hypoxia (IH)-induced lung injury....

متن کامل

Homocysteine Induces Heme Oxygenase-1 Expression via Transcription Factor Nrf2 Activation in HepG2 Cells

Background: Elevated level of plasma homocysteine has been related to various diseases. Patients with hyperhomocysteinemia can develop hepatic steatosis and fibrosis. We hypothesized that oxidative stress induced by homocysteine might play an important role in pathogenesis of liver injury. Also, the cellular response designed to combat oxidative stress is primarily controlled by the transcripti...

متن کامل

c9,t11-Conjugated linoleic acid ameliorates steatosis by modulating mitochondrial uncoupling and Nrf2 pathway.

Oxidative stress, hepatic steatosis, and mitochondrial dysfunction are key pathophysiological features of nonalcoholic fatty liver disease. A conjugated linoleic acid (CLA) mixture of cis9,trans11 (9,11-CLA) and trans10,cis12 (10,12-CLA) isomers enhanced the antioxidant/detoxifying mechanism via the activation of nuclear factor E2-related factor-2 (Nrf2) and improved mitochondrial function, but...

متن کامل

Equol Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice by Inhibiting Endoplasmic Reticulum Stress via Activation of Nrf2 in Endothelial Cells

The development of atherosclerosis is closely related to excessive endoplasmic reticulum stress (ERs). Equol reportedly protects against cardiovascular disease; however, the underlying mechanism for this protection remains unknown. Herein, the mechanisms contributing to the atheroprotective effect of equol were addressed using apolipoprotein E knockout (apoE-/-) mice fed a high-fat diet (HFD) w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017